Electronic Structure Engineering of Cu2O Film/ZnO Nanorods Array All-Oxide p-n Heterostructure for Enhanced Photoelectrochemical Property and Self-powered Biosensing Application

نویسندگان

  • Zhuo Kang
  • Xiaoqin Yan
  • Yunfei Wang
  • Zhiming Bai
  • Yichong Liu
  • Zheng Zhang
  • Pei Lin
  • Xiaohui Zhang
  • Haoge Yuan
  • Xueji Zhang
  • Yue Zhang
چکیده

We have engineered the electronic structure at the interface between Cu2O and ZnO nanorods (NRs) array, through adjusting the carrier concentration of Cu2O. The electrodeposition of Cu2O at pH 11 acquired the highest carrier concentration, resulting in the largest interfacial electric field between Cu2O and ZnO, which finally led to the highest separation efficiency of photogenerated charge carriers. The optimized Cu2O/ZnO NRs array p-n heterostructures exhibited enhanced PEC performance, such as elevated photocurrent and photoconversion efficiency, as well as excellent sensing performance for the sensitive detection of glutathione (GSH) in PBS buffer even at applied bias of 0 V which made the device self-powered. Besides, the favorable selectivity, high reproducibility and extremely wide detection range, make such heterostructure a promising candidate for PEC biosensing applications, probably for the extended field of PEC water splitting or other solar photovoltaic beacons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changing the thickness of two layers: i-ZnO nanorods, p-Cu2O and its influence on the carriers transport mechanism of the p-Cu2O/i-ZnO nanorods/n-IGZO heterojunction

In this study, two layers: i-ZnO nanorods and p-Cu2O were fabricated by electrochemical deposition. The fabricating process was the initial formation of ZnO nanorods layer on the n-IGZO thin film which was prepared by sputtering method, then a p-Cu2O layer was deposited on top of rods to form the p-Cu2O/i-ZnO nanorods/n-ZnO heterojunction. The XRD, SEM, UV-VIS, I-V characteristics methods were ...

متن کامل

An illustration of photocatalytic properties of ZnO nanorods array films

ZnO nanorods array films were coated on a glass template through a two-step chemical process. First, a sol-gel spin coating method was used to produce a ZnO seed layer and after that, the ZnO nanorods arrays were grown on it through a low temperature aqueous method. Synthesized films were studied by scanning electron microscope (SEM) and X-ray diffractometer (XRD). X-ray diffraction results sho...

متن کامل

High-Performance Self-powered Photodetectors Based on ZnO/ZnS Core-Shell Nanorod Arrays

In recent years, there is an urgent demand for high-performance ultraviolet photodetectors with high photosensitivity, fast responsivity, and excellent spectral selectivity. In this letter, we report a self-powered photoelectrochemical cell-type UV detector using the ZnO/ZnS core-shell nanorod array as the active photoanode and deionized water as the electrolyte. This photodetector demonstrates...

متن کامل

Functionalized ZnO@TiO2 nanorod array film loaded with ZnIn(0.25)Cu(0.02)S(1.395) solid-solution: synthesis, characterization and enhanced visible light driven water splitting.

We have designed a novel semiconductor core/layer nanostructure of a uniform ZnO@TiO2 nanorod array modified with a ZnIn0.25Cu0.02S1.395 solid-solution on the surface via a facile hydrothermal synthesis. This novel nanostructure combines the merits of all components and meets the requirements of photovoltaic system application. An intimate PN heterojunction is formed from the ZnO@TiO2 nanorod a...

متن کامل

C2ta00918h 2418..2425

Highly aligned Cu2O, Cu2O/CuO, Cu2O/CuO/TiO2 and Cu2O/TiO2 nanowires arrays on Au substrates were prepared by controlled air annealing of the electrodeposited Cu nanowires and furthered with dip coating. Photoelectrochemical investigations were carried out to determine their potential as photocathodes for water photo-reduction. The photocurrent of the Cu2O nanowires photocathode was found to be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015